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Abstract. We report on a lattice investigation of improved quenched Wilson fermions above and below the
confinement-deconfinement phase transition. Results on meson screening masses as well as spatial wave
functions are presented. Moreover, the meson dispersion relation is studied. Below the critical temperature
we do not observe any significant temperature effect while above Tc the data are consistent with a leading
free quark behavior.

1 Introduction

An important goal of analytical as well as lattice inves-
tigations of QCD at non-vanishing temperature has been
to gain more insight into the temperature dependence of
hadron properties below and into the nature of hadronic
excitations above the transition temperature from the
hadronic to the plasma phase of QCD.

When the temperature is raised towards the transi-
tion point, approaching (approximate) chiral symmetry
restoration and deconfinement is expected to change the
properties of hadrons. In particular, the lightest vector
mesons and the temperature dependence of their masses
and decay widths have received quite some attention be-
cause of their possible relevance to the observed enhance-
ment of low mass dileptons in heavy ion collisions [1]. The
theoretical predictions of these properties are, however,
model dependent, see e.g. [2] for a recent review. In the
plasma phase, the effective, temperature dependent cou-
pling constant becomes small at large temperatures. One
is thus lead to expect that the plasma consists of a gas of
only weakly interacting quarks and gluons. In this case,
correlation functions of operators with hadron quantum
numbers should be described by the exchange of two or
three almost free quarks. On the other hand, there are
arguments that even at high temperature the hadronic
excitation spectrum might be more complicated because
of non-perturbative effects in particular in the chromo-
magnetic sector of QCD [3]. Thus, in both temperature
regimes ab-initio QCD computations are highly desirable.

Hadronic correlation functions at non-vanishing tem-
perature T have been the subject of lattice investigations
for quite a while. Most of these studies are based on the
staggered quark formulation [4–14] while only few so far
utilized the Wilson discretization [15–17] and, just re-

cently, domain wall fermions [18]. Moreover, because of
the limited extent of the lattice in the Euclidean time di-
rection, 0 < t < 1/T , most of these studies investigated
spatial correlation functions and screening masses.

Below the transition temperature, detailed lattice in-
vestigations and comparisons of hadron masses at T = 0
and at T < Tc have been carried out in the quenched
approximation so far. Analyses in the staggered fermion
discretization [8,12] have covered temperatures between
0.8Tc and 0.95Tc and did not detect any significant differ-
ence between zero-temperature masses and finite-temper-
ature screening masses in the investigated hadron chan-
nels. This is also supported by a recent study of spatial
and temporal correlation functions of Wilson fermions on
anisotropic lattices [17] at T � 0.93Tc.

At temperatures above Tc, the available lattice results
on hadronic correlation functions reflect chiral symmetry
restoration because the masses [17] and screening masses
[4–8,10,13,14] in the vector (ρ) and axial vector (a1) chan-
nel become degenerate. In the pseudoscalar and scalar
channels it is observed that π and f0/σ become degen-
erate at Tc [14] while the mass difference between π and
a0/δ seems to vanish only at higher temperatures, see in
particular [18] for a chiral extrapolation at temperatures
closely above Tc. These findings are in accord with the ex-
pected restoration of SUR(NF ) × SUL(NF ) and indicate
that the anomalous UA(1) symmetry is not effectively re-
stored at the critical temperature.

As far as the values are concerned, in the staggered
discretization vector and axial vector screening masses are
compatible with the prediction of lowest order perturba-
tion theory i.e. the propagation of (almost) free quarks.
Scalar and pseudoscalar channels, however, show substan-
tial deviations from this expectation, at least in the tem-
perature interval between Tc and 2Tc. One might argue
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that this observation indicates the existence of (pseudo)
scalar bound states. However, the lowest mass hadron
is unlikely to change from a mesonic state to a quark-
like quasi-particle at a non-critical temperature. In addi-
tion, studies which apply different boundary conditions
[11] suggest that the spectral function is dominated by a
two quark cut. For Wilson quarks it is observed [17] that
already at a temperature of about 1.5Tc the pseudoscalar
and vector screening masses are very close to each other.
There it also is found that a near degeneracy holds true
for the masses. Depending on the source operator utilized,
the pseudoscalar is sometimes even heavier than the vec-
tor meson. While this behavior can at least qualitatively
be explained by the propagation of (almost) free quarks,
[17] provides conflicting evidence since their study of the
wave functions, on the other hand, indicates the presence
of bound states.

In addition to these observables, also spatial wave func-
tions have been analyzed [19]. Here one has found a sim-
ilar behavior as at zero temperature. The observed ex-
ponential decay has then been taken as to suggest that
the relevant hadronic excitations are bound states also
in the plasma phase, at least at temperatures just above
Tc. According to [20], this behavior could, however, also
be explained by the fact that the dimensionally reduced,
3-D effective theory and correspondingly spatial Wilson
loops in 3+1 dimensions show confinement [21–23]. Solv-
ing a two-dimensional Schrödinger equation with a po-
tential which includes a temperature dependent (spatial)
string tension leads to exponentially decreasing spatial
wavefunctions. The corresponding effect on the screening
masses [24] would be an O(10%) correction at the inves-
tigated temperatures [23] which so far could not yet be
checked quantitatively.

None of the lattice investigations of hadronic masses
at non-vanishing temperatures has attempted to carry out
the continuum limit. Most of the mentioned analyses are
based on the staggered discretization. A straightforward
computation in the Wilson formulation of lattice QCD
and a comparison of the results with the staggered ones
would thus help to gain an idea about the discretization
effects. This is the main goal of this paper.

Since we are extracting screening masses and Lorentz
invariance is lost at finite T due to the heat bath, we
have also computed spatial correlation functions projected
onto some non-vanishing momenta and on the lowest non-
vanishing bosonic Matsubara frequency. The purpose of
this attempt is to test for a sizeable difference between
spatial and temporal momentum contributions to the vac-
uum polarization tensor.

As a by-product of the attempt to construct meson
operators with good overlap to the groundstate we also
were able to obtain information about the Bethe-Salpeter
amplitudes of the investigated mesons, the pion and the
ρ.

The paper is organized as follows: in the next section
we present some details of the simulation. This is followed
by the presentation and discussion of the obtained screen-
ing masses in the pion and the ρ channel, both below and

above the deconfinement transition. In Sect. 4 we test the
dispersion relation at non-vanishing temperature. Section
5 contains our estimates of the wave functions.

2 The simulation

The results to be presented here are based on gauge field
configurations which have been generated with the stan-
dard Wilson gluon action. We used a pseudo-heatbath
algorithm [26] with FHKP updating [27] in the SU(2)
subgroups. Each heatbath iteration is supplemented by
4 overrelaxation steps [28]. We have simulated at three
values of the bare coupling, β = 6/g2 = 6.0, 6.2 and
6.4. At these β values the lattice spacing has been de-
termined from quite a variety of observables. Depending
on the quantity, the results spread over a range of about
10% of the central value, however, within the error bars,
agreement is observed. In order to obtain the physical tem-
perature of the lattices in units of the critical one, for def-
initeness we have consistently chosen to set the scale by
the string tension [29], T/Tc = (T/

√
σ) · (√σ/Tc), taking

Tc/
√
σ from [30]. The temporal extent of the finite tem-

perature lattices of Nτ = 8 then corresponds to physical
temperatures of T = 0.93(1)Tc, 1.23(1)Tc and 1.63(2)Tc
at β = 6.0, 6.2 and 6.4 respectively. The spatial volume
of the lattices was chosen as 243 and 323 at β = 6.0, 243

at β = 6.2 and 242 × 64 at β = 6.4. In addition to the
finite temperature simulations we have carried out runs
at zero temperature on lattices of size 163 × 32 at β = 6.0
and 243 × 48 at 6.2 mainly in order to supplement the
available literature data on meson masses by results at
quark masses in the range between the strange and the
charm quark mass. We have generated between 50,000 and
80,000 gauge field configurations and have analyzed con-
figurations separated by 500 or 2000 sweeps (see Table 1).
Autocorrelations have been checked to be negligible.

For the fermion part of the action we used the O(a)
Symanzik-improved Sheikholeslami-Wohlert action [25]
with a tree level clover coefficient of csw = 1.0. The in-
version of the Dirac matrix was carried out by means of
an overrelaxed MR algorithm [31] at moderate to large
quark mass values and by the BiCGStabI [32] for light
quarks. In both cases an even-odd partitioning was em-
ployed. We encountered only very few moderately excep-
tional configurations. Including or omitting those did not
modify the expectation values. With the same combina-
tion of actions as in the present study, the (latest) values
of the critical hopping parameter at zero temperature de-
fined by the vanishing of the pion mass have been deter-
mined as κc = 0.14556(6) [33] and κc = 0.14549(2) [34] at
β = 6.0, κc = 0.14315(2) [35] and κc = 0.14315(1) [34] at
β = 6.2 as well as κc = 0.14143(3) [34] at β = 6.4. These
numbers may be used to convert the various values of the
hopping parameter into an estimate of the corresponding
bare quark masses by means of

mqa = ln
[
1 +

1
2

(
1
κ

− 1
κc

)]
. (1)
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Table 1. A summary of our run parameters. The physical
value of the quark masses has been estimated by using (1)
together with the physical value of the lattice spacing as ob-
tained from string tension determinations. For definiteness,

√
σ

has been taken as 420 MeV

Simulation Parameters
β a [fm] Lattice T/Tc statistics κ mq [MeV]

6.0 0.105 163 × 32 0 O(100) 0.141 200
0.130 750
0.128 800

243 × 8 0.93 O(100) 0.141 200
0.130 750
0.128 800

323 × 8 0.93 O(40) 0.145 30
0.1445 50
0.144 80
0.141 200

6.2 0.077 243 × 48 0 O(100) 0.141 150
0.130 800
0.128 950

243 × 8 1.23 O(30) 0.1428 20
0.14232 60
0.14151 100
0.136 450
0.128 950

6.4 0.058 242 × 64 × 8 1.63 O(100) 0.1409 50
0.1406 80
0.1403 110
0.14 140
0.13 1100

This has been used also in Table 1 where our run param-
eters are summarized.

From the computed quark propagators we constructed
correlation functions of operators with the quantum num-
bers of the pseudoscalar and the vector meson. To improve
the projection onto the lowest energy state, a gauge invari-
ant extended operator was used on the sink site [36]:

MR(x) =
∑
±
e

Ψ
i

α(x)U i,j(x → x+R�e )Γα,β Ψ
j
β(x+R�e) .

(2)
Here, Ψ and Ψ are a quark and an antiquark field sepa-
rated by a distance R, i, j denote color indices and α, β
are spinor ones. Both indices are to be summed over. The
quantum numbers are selected by choosing Γ = γ5 for
the pseudoscalar and Γ = γµ for the vector channel re-
spectively. In the vector channel we have averaged over
the polarizations µ perpendicular to the correlation di-
rection. The explicit sum in (2) is over all unit vectors �e
perpendicular to the correlation direction. This extended
operator is made gauge invariant by introducing the color
parallel transporter U from x to x + R�e. In order to fur-
ther improve the projection and in an attempt to resemble

the gluon cloud [36] the parallel transporter is built from
smeared link fields. At the source site a strictly local op-
erator (R = 0) was put on the lattice.

The most general correlation function CR(�p, t) is thus
obtained as

CR(�p, t) =
∑

x

e−i
p 
x〈PR(�x, t)P †(�0, 0)〉

= 〈0|PR|P (�p)〉〈0|P |P (�p)〉∗

×
{
e−EP (
p) t + e−EP (
p) (Nτ −t)

}
+ · · · (3)

where in this particular example the pseudoscalar corre-
lation in the temporal direction was chosen. In (3), the
exponential fall-off is given by the energy EP (�p) of the
state |P (�p) > at momentum �p. The dots indicate contribu-
tions from excited states with the right quantum numbers.
At non-vanishing temperature, because of the limited ex-
tent of the lattices in the temporal direction, t ≤ 1/T , we
computed spatial correlation functions in the z direction,
CR(�̃p, z), where �̃p denote the momentum components per-
pendicular to the z direction, �̃p = (px, py, pt).

The improvement procedure described above leaves
quite some freedom in choosing optimal parameters. As
for the distance R between quark and antiquark, on each
configuration we have computed the correlation functions
for a variety of different R values. This allowed us to
find the optimal separation for each lattice spacing and
temperature individually. An example of how the sepa-
ration R changes the projection to the lowest mass state
is shown in Fig. 1. Here we plot the effective mass, de-
fined as M eff(t) = ln{CR(t)/CR(t + 1)} for �p = �0, of the
pseudoscalar as a function of t for various R values. The
data has been obtained on the zero temperature lattice at
β = 6.2 at κ = 0.141. The plot illustrates that the con-
tribution of excited states becomes considerably smaller
when R is raised from 1 to 5 lattice spacings in this exam-
ple. The data flattens off and reaches a plateau at smaller
time separations between source and sink. This allows to
extract the lowest mass much more reliably. At R ≥ 7 the
large t limit is approached from below as a single term con-
tributing to (3) is not positive-definite. At the rightmost
data point in the figure the effective mass drops slightly
because the periodicity of the lattice is being felt by the
correlation function. When β is varied we observe that the
optimal distance in lattice units approximately scales with
the lattice spacing i.e. stays constant in physical units.

Contrary to the strong R dependence of the effective
masses which appears to be physical, details of the gauge
field smearing procedure do not seem to matter so much.
We have adopted the APE prescription [37] with a weight
of 2 for the link term and 1 for the contribution of the
staples. As noted also in [36], the precise value of the ra-
tio is not too important, contrary to the case of Wilson
loops. The smeared links were projected back to SU(3)
elements. In test runs it turned out that varying the num-
ber of smearing iterations between 4 and 12 does not have
a big impact on the length of the plateau in effective mass
plots, see Fig. 1. Moreover, between the β values analyzed
we did not observe significant differences.
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Fig. 1. The effective mass Meff(t) as a function of t. The
example shows the pseudoscalar channel at zero temperature
at β = 6.2 and κ = 0.141. The upper figure demonstrates the
effect of varying the distance R between quark and antiquark
while the number of smearing iterations was fixed to 4 in this
example. In the lower plot, R is fixed at 4 and the number of
smearing iterations is varied between 0 and 12

3 Masses

In this section we present our results on the masses. These
were obtained from correlation functions CR(�p = 0, t),
(3), at zero momentum in which case the exponential fall-
off is given by the mass, EH(�p = 0) = MH . For spatial
correlation functions the exponential fall-off defines the
screening mass.

In order to obtain an estimate of the mass of the low-
est state contributing to a given correlation function we
first compared the effective mass plots, e.g. Figure 1, for
various quark pair distances R in search of the optimal R
value with regard to the onset and stability of the plateau.
Subsequently, at the chosen R value fits over intervals
[tmin, Nτ −tmin] with varying tmin (similarly for the spatial
correlations at T �= 0) were performed, again checking for
stability of the mass value. Likewise, we symmetrized the
correlation functions around midpoint,Nτ/2 andNσ/2 re-
spectively, and carried out fits including the full covariance
matrix. Again, the minimum separation from the source
was varied. The results quoted, mass values as well as

Table 2. Meson masses MH of the pseudoscalar and vector
meson at β=6.0, T =0 on a 163×32 lattice and T =0.93 Tc on
243×8 and 323×8 lattices

163 × 32, β=6.0, T =0
κ1 κ2 MP MV

0.1280 0.1280 1.259 (3) 1.284 (4)
0.1300 0.1300 1.162 (3) 1.191 (3)
0.1410 0.1410 0.559 (3) 0.630 (4)

243 × 8, β=6.0, T =0.93 Tc

κ1 κ2 MP MV

0.1280 0.1280 1.262 (7) 1.29 (1)
0.1300 0.1300 1.168 (6) 1.197 (8)
0.1410 0.1410 0.557 (8) 0.64 (1)

323 × 8, β=6.0, T =0.93 Tc

κ1 κ2 MP MV

0.14100 0.559 (5) 0.64 (1)
0.14400 0.463 (6) 0.59 (1)

0.1410
0.14450 0.443 (5) 0.57 (1)
0.14500 0.42 (1) 0.54 (1)

0.14400 0.323 (5) 0.51 (2)
0.1440 0.14450 0.300 (1) 0.50 (2)

0.14500 0.27 (1) 0.47 (2)

0.14450 0.273 (7) 0.46 (2)
0.1445

0.14500 0.22 (1) 0.44 (3)

0.1450 0.14500 0.20 (1) 0.44 (2)

errors, are obtained from the latter fits, selecting the fit
interval by the best χ2 value. The errors given include
an estimate of the systematic error as suggested by a re-
maining dependence of the mass on R and tmin. Finally,
also two-state fits were applied to correlation functions
including data at next-to-optimal R values and smaller
separations from the source in order to further check for
consistency.

The results for the ground state masses in the pseu-
doscalar and the vector channel at the temperatures inves-
tigated are summarized in Tables 2 to 4 and are compared
with the available zero temperature data in Figs. 2 and 3.
In the figures we have plotted the so-called pole mass

mH = 2 sinh
(
MH

2

)
. (4)

Equation (4) arises from a lattice meson action with a
nearest neighbor symmetric difference discretization
which appears to be favored by studies of lattice disper-
sion relations [38,34]. Using mH instead of the coefficient
MH of the exponential fall-off partly corrects for O(am)
lattice artefacts. We observe that mV for the vectormeson
at zero temperature, unlike MV , is strikingly linear in the
quark mass up to values in the vicinity of the charm quark
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Table 3. Meson masses MH of the pseudoscalar and vector
meson at β=6.2, T =0 on a 243×48 lattice and T =1.23 Tc on
a 243×8 lattice

243 × 48, β=6.2, T =0
κ1 κ2 MP MV

0.1280 0.1280 1.124 (2) 1.141 (2)
0.1300 0.1300 1.018 (2) 1.040 (2)
0.1410 0.1410 0.333 (2) 0.420 (4)

243 × 8, β=6.2, T =1.23 Tc

κ1 κ2 MP MV

0.1280 0.1280 1.110 (4) 1.110 (5)
0.1300 0.1300 0.995 (5) 1.011 (4)
0.1410 0.1410 0.350 (4) 0.410 (8)

243 × 8, β=6.2, T =1.23 Tc

κ1 κ2 MP MV

0.12800 1.20 (2) 1.23 (2)
0.13600 1.04 (1) 1.07 (1)

0.12800 0.14151 0.96 (1) 1.01 (2)
0.14232 0.96 (2) 1.01 (2)
0.14280 0.95 (2) 1.00 (2)

0.13600 0.86 (1) 0.91 (2)
0.14151 0.78 (1) 0.85 (2)

0.13600
0.14232 0.76 (2) 0.85 (3)
0.14280 0.76 (1) 0.85 (3)

0.14151 0.66 (2) 0.76 (2)
0.14151 0.14232 0.65 (2) 0.76 (2)

0.14280 0.64 (2) 0.76 (3)

0.14232 0.64 (2) 0.76 (2)
0.14232 0.14280 0.64 (2) 0.75 (3)

0.14280 0.14280 0.63 (1) 0.75 (3)

Table 4. Meson masses MH of the pseudoscalar and vector
meson at β=6.4, T =1.63 Tc on a 242×64×8 lattice

242 × 64 × 8, β=6.4, T =1.63 Tc

κ1 κ2 MP MV

0.13000 0.13000 1.055 (5) 1.085 (2)
0.14000 0.14000 0.720 (4) 0.756 (7)
0.14030 0.14030 0.721 (4) 0.757 (4)
0.14060 0.14060 0.719 (3) 0.756 (3)
0.14090 0.14090 0.718 (3) 0.755 (4)

mass. For small meson masses the difference between mH

and MH is of course negligible.
Figure 2 summarizes the results at β = 6.0 which on

the high temperature lattice corresponds to a temperature
of 0.93Tc. The upper part of the figure shows mV and m2

P
at small quark mass values while the lower part covers the
entire quark mass range explored. The meson masses are
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Fig. 2. Meson masses at T � 0.93Tc compared with the zero
temperature results as a function of the quark mass. The zero-
temperature data is partially taken from the literature [33,34,
39]. The upper plot features the vectormeson mass and the
pseudoscalar mass squared in the vicinity of the chiral limit
while in the lower part the data for the entire quark mass
range are shown. Here both masses are plotted linearly. The
lines are fit results explained in the text

plotted as function of mq where the quark mass is ob-
tained from (1) with κc (T =0) determined from a linear
fit inmq to the combined zero temperature literature data
on m2

P [33,34] up to quark mass values mqa < 0.08. As
can be seen from the lowest lying line drawn in the up-
per part of Fig. 2, the linear fit works well and deviations
begin to emerge at mqa � 0.1. Our result for the criti-
cal kappa value is κc (T =0)= 0.14542(2) which deviates
marginally from the values quoted in [33,34,39] because
we have chosen a fit procedure slightly different from the
one adopted there. Note however, that our value is well
within the spread of the quoted κc values. Moreover, the
upper part of Fig. 2 shows that the finite temperature pion
(screening) mass retains a small but non-vanishing value
at κc (T = 0). A fit to the m2

P data at quark mass val-
ues up to 0.08 of the form c+ smq, shown as the second
lowest dotted line, leads to an intercept c = 0.006(3) at
mq = 0. The slope s = 3.07(8) is a little larger than the
value of s = 2.87(3) obtained from the equivalent fit to
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the T = 0 data. Alternatively, one can perform a fit with
a temperature dependent κc leading to a slightly different
value, κc (T ) = 0.14550(4).

For the vectormeson masses, when plotted as a func-
tion of the zero temperature quark mass, we find that, as
a whole, they apparently tend to be somewhat larger than
the zero temperature values. In both cases, fits linear in
the quark mass work well and we obtain mV = 0.42(2) at
T � 0.93Tc as opposed to 0.38(1) at T = 0 in the chiral
limit. This is shown as the appropriate lines in the upper
part of Fig. 2. At least part of this difference could, how-
ever, be absorbed into the shift in κc mentioned above.

In the lower part of Fig. 2 mV and mP are shown lin-
early over the entire quark mass range explored. At zero
temperature, the vectormeson mass is linear in mq over
the entire range. A fit ansatz including a term quadratic
in the quark mass returns a value of 0.05(19) for its coeffi-
cient which is compatible with 0. The intercept is obtained
as 0.381(6). Within errors this intercept is in agreement
with the result of a linear fit,mV = 0.379(2)+2.588(5)mq

which is shown in the figure. Note, that these numbers are
in agreement with the results for the intercept obtained
from the fit to the small quark mass data only. The mass
of the pseudoscalar shows a behavior proportional to √

mq

at small quark masses, as expected from chiral perturba-
tion theory, which turns into a linear one at larger mq

values. Correspondingly, we chose a fit ansatz of the form

mP =
√
bmq + dm2

q (5)

which returns b = 2.57(1) and d = 5.39(6), shown as the
lowest line in the figure.

Regarding the results at non-vanishing temperature,
also at large quark masses we do not observe significant
differences to the zero temperature data. However, the me-
son mass values are again plotted at the zero temperature
quark masses, i.e. as a function of 1/κ− 1/κc (T =0) with
our value of κc at T =0. In a fit to the pseudoscalar mass
data over the entire mq range, we therefore allow for a
non-vanishing chiral limit and replace mq by mq → mq+c
in the ansatz (5). This fit leads to the second lowest dot-
ted curve in the lower part of Fig. 2 with c = 0.005(2),
b = 2.3(1) and d = 5.9(2). When fitting the vectormeson
over all quark masses we observe a slightly better perfor-
mance in terms of χ2 of a fit including terms quadratic in
mq,mV = 0.413(6)+2.45(5)mq+0.13(5)m2

q, over a linear
one, mV = 0.401(5) + 2.59(1)mq. The quadratic term is
not large though and the intercepts have their error bars
touching each other. Note however that the intercept of
the quadratic fit is in slightly better accord with the re-
sult of the linear fit to the small quark mass data. The
corresponding line in Fig. 2 is the quadratic function.

Summarizing the results at T � 0.93Tc, we note that
the pion (screening) mass exhibits only a very small value
in the zero temperature chiral limit which could be ab-
sorbed by a slight shift in the critical kappa value. This
might also be a finite size effect as the finite temperature
lattice is somewhat bigger in spatial volume than the zero
temperature ones. A non-vanishing temperature effect is
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Fig. 3. Meson masses at T � 1.23Tc and 1.63Tc compared
with zero temperature data partially taken from the literature
[33,34,39]

perhaps seen in the vectormeson data which shows an en-
hancement of 7 to 10% over the zero temperature data. It
remains to be seen, however, whether this finding persists
in the continuum limit. On the other hand, our results in
the Wilson discretization are in good agreement with ob-
servations made in earlier studies using staggered fermions
[12].

The results for the meson masses at β = 6.2 and 6.4
corresponding to the two temperatures above Tc which are
investigated here, T � 1.23Tc and 1.63Tc respectively, are
summarized in Fig. 3. Again, we show mV and mP as a
function of the quark massmq with κc (T = 0) determined
as explained above from fits to the combined zero tem-
perature pion mass results [34,35] at small quark mass.
The resulting critical κ values are κc = 0.14313(2) and
0.14141(3) at 6.2 and 6.4, respectively.

The zero temperature data shows the same behavior
as at β = 6.0, including the linearity in mq of the vector
meson mass up to the largest quark masses explored. At
β = 6.2 we fitted mV at T = 0 over the entire quark
mass range both, quadratically in mq, leading to mV =
0.283(2)+2.61(2)mq+0.10(4)m2

q as well as linearly,mV =
0.279(1)+2.65(5)mq. Again, the quadratic term was found
to be small and the intercepts are stable. Using only data
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close to the chiral limit leads to an extrapolated value
of mρ = 0.267(8), so that the deviation from the fits to
the full data set is a little larger than at β = 6.0. The
dotted lines given in Fig. 3 are the quadratic fits. Note,
that the data points labelled by “non-deg” indicate meson
masses obtained from propagators with two quarks of non-
degenerate masses. They are plotted as a function of an
”effective” quark mass mq = (mq,1 +mq,2)/2 and fit very
well on the quadratic curves at T = 0. The pseudoscalar
data was again fitted with the ansatz of (5) which gives
b = 1.846(8) and d = 6.22(3) in this case. This is shown
again as the lowest line in the figure.

At β = 6.4 only data at small quark masses were avail-
able [34] and we have carried out a linear fit to the vector
meson, with the result mV = 0.19(1) + 3.23(3)mq. Al-
though κc (T = 0) was obtained from fits to m2

P in the
vicinity of the chiral limit, in Fig. 3 we only show, as lines
to guide the eye, the results of fits with (5) under the
condition that mP � mV for large mq.

In contrast to the situation at T < Tc, at both tem-
peratures above the transition point the screening masses
are markedly different from the zero temperature results,
especially at small quark mass values. The curves interpo-
lating the non-zero temperature data are polynomials of
third degree for the vectormeson at T =1.23Tc and of sec-
ond degree elsewhere. We have chosen this ansatz because
above Tc no particular functional form is known so far.
The curves are the results of fits to data for degenerate
quark masses and are mainly meant to guide the eye. The
intercepts were obtained from these fits as mπ(1.23Tc) =
0.63(2),mρ(1.23Tc) = 0.74(2) andmπ(1.63Tc) = 0.735(5),
mρ(1.63Tc) = 0.774(8) at the two temperatures respec-
tively. They are discussed in the following.

At high temperatures one expects that the plasma con-
sists of only weakly interacting quarks and gluons. Corre-
spondingly, the correlation functions with mesonic quan-
tum numbers should be described to first approximation
by the free propagation of a quark-antiquark pair. In this
case the exponential fall-off of the correlation functions is
not dominated at large distances by a single mass origi-
nating from an isolated pole in the spectral function but
rather by all possible energies of quark and antiquark with
opposite “momenta” of equal size adding to zero total mo-
mentum to which the correlation functions are projected
on. Correspondingly, effective masses taken from point to
point correlations (R = 0 in (2)) exhibit a rather marked
curvature as function of the separation between the meson
operators. Tuning R away from 0 leads to a suppression of
higher quark momenta in the momentum sums. This way,
it is possible to obtain plateau-like behavior in effective
mass plots also in the free quark case. The lowest value
of quark “momentum” in the temporal direction, i.e. the
smallest Matsubara frequency is πT due to the antiperi-
odic boundary condition for fermions in the t direction.
This leads to the lowest “energy” contributing to spatial
correlation functions of mesonic operators of

mH = 2
√
m2

q + (πT )2 (6)
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Fig. 4. Comparison with the results of quenched staggered
simulations below [12] and above Tc [5,7]. The data have been
rescaled by the appropriate ratio of 2π, (6), to its finite lattice
size corrected value so that the data can immediately be com-
pared with the continuum expectation for free quarks shown
as the horizontal line

in the continuum. On a finite lattice, (6) is subject to fi-
nite volume and finite lattice spacing corrections, see e.g.
[7]. In order to compare our simulation results at T > Tc
with the free quark case, we have computed the free quark
propagator on a finite lattice analytically and performed
the sum over all lattice “momenta” �̃p of the quarks nu-
merically. For definiteness, we then plot the effective mass
for point to point correlations at a separation z = Nσ/4.
This results in the solid curve shown in the upper part of
Fig. 3.

As in the free case, in our results from the Monte
Carlo simulations we are also able to identify plateaux
in the effective mass plots when the separation R, (2),
is tuned. The vectormeson and, to a somewhat less de-
gree, the pseudoscalar masses approach the free quark
limit as is seen from Fig. 3. The remaining differences are
becoming smaller with rising temperature. Moreover, the
fact that the masses for non-degenerate quark combina-
tions, plotted at mq = (mq,1 + mq,2)/2, are above the
ones for degenerate quarks would fit into this picture as
2
√
m2

q + (πT )2 <
√
m2

q,1 + (πT )2 +
√
m2

q,2 + (πT )2. At
large quark masses the Monte Carlo data exceed the free
quark curve. This could be explained by noting that in the
lattice version of (6) we have used the bare quark mass.
At the temperatures investigated one should presumably
compare with an effective quark mass which also accounts
for a thermal contribution [9]. In addition, it has been
argued in the context of dimensional reduction that the
(confining) potential of the reduced three-dimensional the-
ory leads to modifications of (6) for screening masses [24].
These modifications will be positive and of order √

σspat,
where σspat is the string tension of spatial Wilson loops,
and can be estimated to amount to an O(10%) effect [23].

Finally, in Fig. 4 our results are compared with data
obtained in the staggered fermion discretization, both be-
low Tc [12] and above [5,7]. Below Tc the π and ρ screen-
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ing masses are shown in the chiral limit. The agreement
between the two discretizations is evident. Above Tc the
staggered data was computed at a small bare quark mass
of mqa = 0.02 while the Wilson results have been extrap-
olated to the chiral limit. From Fig. 3, however, recall that
above Tc the screening masses are practically independent
of mq at small quark masses. Both data sets have been
rescaled by the appropriate ratio of 2π, (6), to its finite
lattice size corrected value so that the data can imme-
diately be compared with the continuum expectation for
free quarks. Figure 4 shows that above Tc the ρ screening
mass rapidly approaches 2π. This holds in both discretiza-
tions. The pion however behaves very differently for the
two lattice actions. In the Wilson case, at 1.63Tc the pion
screening mass is almost degenerate with the ρ and close
to 2π, with a π to ρ ratio of 0.95(1). The same approx-
imate degeneracy of π and ρ screening masses has been
observed in the only other quenched analysis with Wilson
quarks available so far [17]. Here a ratio of 0.955(7) has
been obtained at a temperature of about 1.5Tc. Quite con-
trary, the staggered pion screening mass is much smaller
than the ρ, mπ/mρ = 0.75(2) at 1.8Tc, and even at 5Tc
reaches only about 75% of two times the lowest Matsubara
frequency. There is no immediate explanation at our hands
at least. Possible reasons include the different symmetries
of the lattice actions at non-vanishing lattice spacing al-
though the lattice spacings are below 0.1 fm, the different
aspect ratios although it is hard to see why this should
affect the π to ρ ratio, and finite volume effects although
those would be expected to go the opposite way. Thus, it
is hoped that future systematic studies help to resolve this
discrepancy between the two lattice fermion formulations.

4 Dispersion relation

At non-zero temperature, Lorentz invariance is broken be-
cause the temporal direction is distinguished as the di-
rection of the four-velocity of the heat bath. As a con-
sequence, unlike the zero temperature case where it de-
pends on the Lorentz invariant scalar p2, in this case the
spectral density will depend on temporal and spatial com-
ponents p0 and �p separately. At temperatures below the
confinement-deconfinement transition the spectrum will
still consist of particle excitations, yet, their dispersion
relations might be more complicated and reflect the break-
ing of Lorentzian invariance. The spectral density will be
of the form

ρ(p0, �p) = 2πε(p0)δ(p20 − ω2(�p, T )) (7)

where
ω2(�p, T ) = m2 + �p 2 +Π(�p, T ) (8)

contains the temperature dependent vacuum polarization
tensorΠ(�p, T ). As a simple example, assume that the tem-
perature effects can be absorbed into a temperature de-
pendent mass m(T ) and a coefficient A(T ) which might
also be temperature dependent and different from 1,

ω2(�p, T ) � m2(T ) +A2(T )�p 2 . (9)

Such an approximation might hold at least at small tem-
peratures. In this case, at zero momentum the temporal
correlator will decay with the so-called pole mass m(T )

C(�p = 0, t) ∼ exp(−m(T )t) (10)

whereas the spatial correlation function has an exponen-
tial fall-off

C(�̃p = 0, z) ∼ exp(−msc(T )z) (11)

determined by the screening mass msc(T ) = m(T )/A(T )
which differs from the pole mass if A(T ) �= 1. At non-
vanishing “momentum”, �̃p �= 0, the exponential decrease
of the spatial correlator is described by ωsc,

C(�̃p, z) ∼ exp(−ωscz) (12)

where in this particularly simple example ωsc is given as

ω2
sc = �p 2

⊥ +
ω2
n

A2 +m2
sc . (13)

Comparing different projections to Matsubara frequencies
ωn = 2πTn and to spatial momenta �p⊥ might thus reveal a
dispersion relation different from the zero temperature one
and, moreover, indicate a coefficient A different from 1 and
correspondingly a difference between pole and screening
mass.

The formulae given above are the continuum disper-
sion relations. They are modified on the lattice. Zero tem-
perature studies [38,34] have shown that a lattice disper-
sion of the form

sinh2
(
E

2

)
=

∑
k

sin2
(pk
2

)
+ sinh2

(
M

2

)
(14)

arising from an effective boson action with a nearest-
neighbor kinetic term, is best capable to describe lattice
data at non-zero momentum.

We investigated the lattice dispersion relation of
mesons below Tc, T � 0.93Tc, for different quark masses
and compared it with T = 0 data. In Fig. 5 we show our
results obtained in the pseudoscalar channel at κ = 0.141.
We have plotted Mπa obtained by subtracting the mo-
mentum contribution sin2(pka/2) from both sides of (14)
where E is the fitted coefficient of the exponential fall-off
in z of the spatial correlation function. Results at other κ
values investigated are very similar.

In Fig. 5, a pk independence of the data indicates that
(14) is the correct dispersion relation. Indeed, it seems to
be favored by the zero temperature data. As in [38], using
a different dispersion relation led to data points rising or
falling with pk.

Regarding the data at T = 0.93Tc, again we observe
that the zero-temperature dispersion, (14), is describing
the data for non-vanishing spatial momentum components
properly. Note that the figure contains data from two dif-
ferent lattice sizes, leading to different values for the spa-
tial momenta. Moreover, the single data point for the low-
est bosonic Matsubara frequency ω1 = 2πT is also lying
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Fig. 5. The lattice dispersion relation shown for the pseu-
doscalar channel at κ = 0.141. In the figure, “dir” indicates
whether spatial or temporal components of (px, py, pt) were
chosen to be different from 0. The horizontal lines denote the
dispersion relation (14). Note that the T = 0 data has been
shifted upwards, right scale

on the horizontal line, suggesting that the coefficient A of
(13) is not too far from unity. Of course, this conclusion is
tied to the applicability of (13), moreover, the statistical
significance is certainly not overwhelming. Nevertheless,
this result might be taken as further support for the dif-
ference between pole and screening masses not being too
large at T � 0.93Tc, see also [17].

In addition to the investigation below Tc, we also com-
puted the dispersion relation in mesonic channels in the
deconfined phase. The results are shown and compared
with the free quark case in Fig. 6. The former have been
determined by fits in the same way as the masses while
for the latter, to be definite we use the effective energies
at Nσ/4, obtained from sink operators with R = 4. Both,
Monte Carlo as well as free quark results are somewhat de-
pendent on the quark-antiquark distance. As can be read
off the figure, at 1.23Tc the data for spatial momenta show
systematic deviations from the preferred zero-temperature
dispersion relation. These differences have almost disap-
peared at 1.63Tc and the data are becoming consistent
with the zero-temperature dispersion relation which also
happens to describe the free quark case. For the lowest
temporal mesonic “momentum”, pt = 2πT , at 1.23Tc
pseudoscalar and vector “energy” both are systematically
lower than the corresponding results for a spatial momen-
tum of exactly the same value showing that Lorentzian
symmetry is disturbed. At 1.63Tc the data follow the free
quark behavior, in particular insofar in the vector chan-
nel the “energy” at pt = 2πT is much smaller than the
“energy” at the same spatial momentum1.

1 Note that this, at first sight strange behavior can easily be
reproduced in the continuum if only the lowest quark Matsub-
ara frequency would contribute to the correlation function. Of
course, in this case pseudoscalar and vector channel would lead
to the same result. Apparently, the interplay between higher
quark momenta and the spin structure is important
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Fig. 6. The lattice dispersion relation at two temperatures
above Tc and in the free quark case. Shown are both the results
for the pseudoscalar and the vector channel. The bare quark
mass is roughly equal to ms. Again, “dir” indicates whether
spatial or temporal components of (px, py, pt) were chosen to
be different from 0. The horizontal lines denote the dispersion
relation (14)

5 Wave function

Bethe-Salpeter amplitudes provide information about the
probability of finding a pre-arranged configuration of
quarks inside a hadron. Their general definition is given
by

Φ(�R) = 〈0|O(�R)|H(�p)〉 (15)
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where, for |H〉 being a meson state, the operator O(�R)
annihilates a quark-antiquark pair with the appropriate
quantum numbers separated by �R. The choice of the op-
erator is not unique. On the lattice, Bethe-Salpeter ampli-
tudes have been studied in Coulomb and in Landau gauge
or by using various gauge-invariant definitions [40–43,36].
The various methods treat the gluon flux tube connecting
quark and antiquark in a different way so that it may not
be surprising that different definitions of the amplitudes
have lead to different results (see however [43]). Moreover,
an immediate connection between the size of a hadron as
extracted from the amplitudes and the measured radii has
not been demonstrated. Nevertheless, the Bethe-Salpeter
amplitudes do provide some qualitative insight into the
quark distribution inside a hadron, and in particular they
should be able to capture differences in the structure of
hadronic excitations at zero and high temperature if these
are present [19].

As a by-product of the attempt to obtain a better
projection onto the ground state, in this paper we use
a gauge-invariant definition of O(�R) as given in (2) [36].
We analyze S-wave states only as this operator is invari-
ant under 90◦ rotations. The Bethe-Salpeter amplitudes
are determined from simultaneous two-state fits to all the
correlation functions CR at all R values at which they
were calculated. In these fits the ground state mass was
required to be the same at all R whereas the mass of the
second state as well as the amplitudes for both ground and
excited state were allowed to be R dependent. Again, the
fit interval was varied and we checked for stability of the
fit results under this variation as well as for agreement
of the ground state mass with the numbers obtained as
explained in Sect. 3.

The procedure proved stable enough to extract the
Bethe-Salpeter amplitude for the ground state as well as
to obtain an estimate for the excited state. An example
of the results is shown in Fig. 7. Here, the wave functions
have been normalized to 1 at R = 0. Note that the ampli-
tude of the excited state is vanishing at about 1/2 fm.
This corresponds with the observation that at large R
effective masses approach the plateaux in effective mass
plots from below, see Fig. 1. The results for the excited
states are more sensitive to variations of the fit interval
since at small separations from the source more than one
excited state can contribute whereas at large separations
the excited state dies out. We will thus concentrate on the
ground state results in the following.

The ground state wave functions2 are fitted with
slightly modified hydrogen S-wave functions [42],

Φ(R) ∝ exp(−(R/a0)ν) (16)

with the free parameters a0 and ν. In non-relativistic po-
tential models the power of R is obtained as ν = 1 for a
purely Coulombic and ν = 3/2 for a linear potential. The
wave functions can be used to compute an estimate of the
size of the meson [42],

2 The excited states could be well fitted by the ansatz Φ(R) ∝
(1 − R/b1) exp(−(R/a1)ν) which accounts for the node in the
wave function
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〈r2〉 =
∫
d 3 �R

(
R

2

)2

Φ2(R)/
∫
d 3 �R Φ2(R)

=
a2
0 Γ (5/ν)

41+1/ν Γ (3/ν)
. (17)

The results of these fits to the pseudoscalar as well
as vector meson ground state are summarized in Table 5.
We first want to stress that the measured zero tempera-
ture wave functions, i.e. the parameter a0 and the radius
respectively, scale with β as the lattice spacing when the
(physical) quark mass is fixed. This is lending further sup-
port that the investigated observable is physical.

At T = 0, the obtained values for the parameter ν lie
between the values for a purely Coulombic and a purely
linear potential. The values for ν are slightly increasing
with the quark mass and they are larger for the vector
meson than for the pseudoscalar. Moreover, the values for
a0 and for the radii are also increasing with the quark
mass and again are larger for the vector meson than for
the pseudoscalar. Both effects are consistent with the ex-
perimental observation that the ρ meson is larger than the
pion and thus probes the linear rising part of the potential
at larger distances. Compared to the (Coulomb gauge) re-
sults of [42] at the same pseudoscalar to vector meson mass
ratio, we observe perfect agreement for the parameter ν of
the pseudoscalar ground state whereas our ν value for the
vector meson is slightly smaller. The second moments of
the meson wave functions, (17), are about 10% larger than
in [42]. Still, as reported there, we obtain radii which are
about a factor two smaller than sizes obtained from form
factor measurements. Whether this discrepancy is due to
the quenched approximation i.e. to not taking proper ac-
count of a pion cloud still has to be speculated at the
present stage.

At T = 0.93Tc the pseudoscalar as well as vector me-
son (spatial) wave functions agree with the (temporal)
zero temperature ones at quark masses where we have
data for both. This also holds for the excited state, see
Fig. 7. At this temperature we also have data at small
quark masses so that we can attempt a chiral extrapola-
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Table 5. Results for the coefficients a and ν of the ground state wave function, (16),
as well as for the mean radius squared, (17), for the pseudoscalar (P) and vector meson
(V)

P V

size β κ a0 ν 〈r2〉 a0 ν 〈r2〉
163 × 32 6.0 0.141 4.06(4) 1.24(4) 6.7(5) 5.35(4) 1.42(4) 8.7(5)

0.130 3.42(2) 1.29(4) 4.3(3) 4.06(2) 1.42(5) 5.0(3)
0.128 3.38(4) 1.23(4) 4.7(4) 4.03(5) 1.32(6) 5.7(6)

243 × 48 6.2 0.141 5.32(3) 1.15(2) 13.9(7) 7.59(5) 1.40(3) 18.0(8)
0.130 4.27(3) 1.20(3) 8.0(5) 5.27(5) 1.34(5) 9.5(8)
0.128 4.09(3) 1.20(3) 7.4(5) 4.97(4) 1.34(4) 8.4(5)

323 × 8 6.0 0.145 4.17(7) 1.21(6) 7.5(10) 5.80(14) 1.50(14) 9.4(13)
0.1445 4.15(6) 1.21(4) 7.4(6) 5.87(11) 1.51(22) 9.3(24)
0.144 4.15(6) 1.23(6) 7.1(9) 5.64(13) 1.47(17) 9.1(19)
0.141 4.03(3) 1.25(4) 6.5(5) 5.36(5) 1.50(14) 7.9(13)

243 × 8 6.2 0.1428 3.90(17) 1.38(23) 4.9(17) 4.85(9) 1.81(32) 4.9(11)
0.14232 3.94(8) 1.42(14) 4.7(9) 4.74(18) 1.76(30) 4.9(11)
0.14151 3.84(7) 1.43(11) 4.4(5) 4.75(8) 1.76(30) 4.9(10)
0.136 3.70(5) 1.46(10) 3.9(5) 4.39(8) 1.68(22) 4.5(8)
0.128 3.47(3) 1.55(12) 3.1(4) 3.90(3) 1.70(13) 3.5(4)

242 64 × 8 6.4 0.1409 3.91(5) 1.59(8) 3.8(3) 4.86(3) 1.89(19) 4.7(5)
0.1406 3.92(5) 1.60(7) 3.8(3) 4.86(4) 1.88(20) 4.7(6)
0.1403 3.92(5) 1.60(7) 3.8(3) 4.86(3) 1.88(20) 4.7(6)
0.14 3.93(6) 1.61(9) 3.8(3) 4.85(2) 1.81(19) 4.9(6)
0.13 3.69(3) 1.69(7) 3.1(2) 4.19(1) 1.82(9) 3.7(2)

tion. A fit to the squared radii which is linear inm2
PS leads

to values of 〈(r/a)2π〉 = 7.6(6) and 〈(r/a)2ρ〉 = 9.6(12), re-
spectively, which are in agreement within errors with the
zero-temperature numbers reported in [42].

At the two temperatures above Tc it is observed that
the spatial wave functions in lattice units practically re-
main unchanged between the two β values. This is distinc-
tively different from the zero temperature situation.

In more detail, fits to the wave functions with (16)
return the values given in Table 5. The results for the pa-
rameter a0 are almost independent of β. The parameter
ν takes on values which are larger than at zero tempera-
ture. Close to the chiral limit, ν changes from about 1.4
at 1.23Tc to 1.6 at 1.63Tc for the pion while for the ρ the
change with temperature is smaller, ν � 1.8 and 1.9 re-
spectively. The second moment of the wave function, 〈r2〉,
in lattice units stays constant within errors for the ρ while
for the pion with rising temperature we observe a decrease
of the central values, with error bars just overlapping. As
the quark mass is increased the size of the state is slightly
shrinking.

Translated to physical distances a shrinking of the
states’ size with temperature is clearly oberved, Fig. 8. At
least qualitatively, this observation is in accord with the
anticipated behavior [24,20] of

Φ(R) ∝ exp(−
√
σspat(T )πTR3/2) (18)
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Ground state T = 0.93 Tc
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T = 1.63 Tc

Fig. 8. Wave functions for the ground state of the pseu-
doscalar at T �=0, for mq ≈ms

where σspat(T ) is the temperature dependent string ten-
sion of spatial Wilson loops,

√
σspat(T ) = c g2(T )T . Given

the small variation of the effective coupling constant g(T )
between T = 1.23 and 1.63Tc, 〈r2〉 should thus shrink
proportional to 1/T 2 to first approximation. Indeed, this
seems to hold for the vector meson whereas the variation
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with temperature of the pion radius is stronger. Moreover,
the power of the R dependence is not quite as anticipated.
A more detailed investigation along the lines of [20] is
planned for the future.

6 Conclusion

In this paper we have presented results of a lattice investi-
gation of meson correlation functions built from improved
Wilson quarks on quenched gauge field configurations.
Below the confinement-deconfinement transition temper-
ature we do not observe any significant difference between
finite temperature screening masses and zero temperature
masses. This agrees with earlier findings obtained in the
staggered discretization. Likewise, the spatial wavefunc-
tions at non-vanishing temperature agree with wave func-
tions at T = 0. Moreover, the dispersion relation does not
seem to depend on whether the “momenta” are chosen
to point in the spatial or temporal direction. This can be
viewed as a hint towards the similarity of screening and
pole masses as has also been reported in an earlier study
on anisotropic lattices. Above the critical temperature,
we have computed meson screening masses which in both
cases, pseudoscalar as well as vector channel, are close to
twice the lowest quark Matsubara frequency. Moreover, at
1.63Tc the “momentum” dependencies of the correlation
functions are in agreement with the free quark case while
at 1.23Tc the situation certainly is more complex. Finally,
the spatial wave functions, at least qualitatively, behave in
accord with the expectation that the temperature depen-
dence of the spatial string tension leads to a narrowing of
the wave functions with rising temperature. We thus come
to conclude that above Tc the spatial correlation functions
are consistent with a leading two quark contribution. This
still leaves room for infrared non-perturbative effects. Note
in this respect that HTL-resummed perturbation theory
does not show significant changes in (temporal) correla-
tion functions although the underlying spectral function
is quite different from the free case [44]. It is our hope
that more refined analysis techniques along the lines set
in [45] and perhaps more systematic studies of infrared
properties on large lattices extend the knowledge about
hadronic excitations in the plasma phase.
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